Meningioma Protein-Protein Interaction Network

Hakimeh Zali PhD¹, Mostafa Rezaei Tavirani PhD*²

Abstract

Meningioma is one of the most common central nervous system tumors derived from meningotheial (arachnoid cap) cells. This paper identified the network-based Protein-Protein Interactions (PPI) for meningoima compared to healthy controls. Gene expression data, including 384 gene or protein names, were extracted from a number of previous investigations. Out of these 384 proteins, 176 were found to be exclusively expressed in meningoimals and 208 proteins were down-regulated. The networks of related differentially expressed genes were explored using cytoscape and the PPI analysis methods such as MCODE and ClueGO. The results introduced a number of hub proteins and 27 clusters (protein complex) with distinctive seed genes. Identified ClueGO Pathways based on subnetworks mined by MCODE was composed of positive regulation in RBC homeostasis, dysregulation of transport from ER to Golgi, disruption regulation of cell cycle and antigen processing and presentation of exogenous peptide antigen and neutralization of exogenous dsRNA. Combination of over-expression of TCEA1, UBE2E1, XRCC5, IFIT1, IFIT-3, MCM2, and MCM7 and under-expression of CDC25A, SEC31A, and CDK6 can serve as a diagnostic biomarker panel for meningoimals. These proposed network-based biomarkers for the meningoima patterns may be helpful in diagnosis, prognosis and treatment processes, although biomarker validation is necessary.

Keywords: Biomarker, Hub, meningoima, protein complex, protein-protein interactions network

Cite this article as: Zali H, Rezaei Tavirani M. Meningioma Protein-Protein Interaction Network. Arch Iran Med. 2014; 17(4): 262 – 272.

Introduction

Meningiomas are the most common non-glial neoplasms of the central nervous system (CNS) and account for one fifth of all intracranial tumors.¹² They are extra-axial tumors that originate from the arachnoid cap cells of the meninges. These tumors are more common in women and uncommon in patients before the age of 40; their incidence in younger patients might be due to neurofibromatosis type 2 (NF2). The World Health Organization (WHO) classification for CNS tumors categorizes them as WHO I: meningioma (about 88–95%), WHO II: atypical meningioma (atypical, clear cell, chordoid- about 5–6%), WHO III: malignant meningioma (rhabdoid, anaplastic, papillary - about 1%), and finally WHO IV: meningioma with sarcomatous degeneration that is extremely rare.⁴ Malignant tumors are rare and about 90%: all meningoimals are benign.¹ The etiologies of meningoimals are not fully clear.⁶ Familial cases are much lower in frequency than sporadic ones. In the past, cases with exposure to radiation suffered from brain injury, especially those who had frequent dental X-rays as the X-ray dose used to be higher than now.³ Studies of cell phones have found no relationship between cell phone use and incidence of meningoimals.⁵⁹

Although the Magnetic Resonance (MR) spectroscopy generally is not required for perfect diagnosis, it can be helpful for recognizing meningoimals from mimics i.e. increased alanine, glutamine / glutamate and choline indicate cellular tumor. Significant reduction in N-acetyl aspartate indicates non-neuronal origin. On MR perfusion, there is good correlation between volume transfer constant (k-trans) and histological grade.¹⁰¹¹

Mutations in NF-2 gene have been detected in 60% of meningoimals.¹² The NF2 gene, a tumor suppressor gene located at 22q12.2, is the main candidate for the genesis of meningoimalias. Expression of other tumor suppressor genes, including THBS1, TIMP-3, p16 (INK4a), MGMT, p73, ER, GSTP1, RB1 and p14 (ARF), is inhibited in meningoimals.¹³¹⁴ Other possible genes/loci include AKT1, MN1,¹⁵ PTEN,¹⁶ SMO and an unknown gene at 1p13.¹⁷¹⁸ Sadetzki et al. showed that variations in Ki-RAS and ERCC2 are associated with an approximately 2-fold increased risk of meningoima.¹⁹

Apart from genetic aberrations, alterations in protein expression have been reported. Saydam et al. (2011) compared meningoima cells proteome to human primary arachnoidal cells to discover novel protein biomarkers for diagnostic and/or prognostic purposes. They found a significant increase in minichromosome maintenance (MCM) family (MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7) in meningoimalias.²⁰ The role of proteolytic enzymes, such as serine proteases and metalloproteinases, in tumor invasion and metastasis are previously indicated in several types of cancer.²¹

Although most meningoimals are slow growing benign tumors, huge meningoimals are believed to entail surgical risks. However, if a meningoima is diagnosed in early stages, it can be treated non-surgically. Since homogenous genotype of meningoimalias is the characteristic of benign rather than malignant brain tumors, it makes relatively easy to discover candidate biomarkers for meningoimalias. On the other hand, study based systems lead to find useful diagnostic biomarkers of meningoimalias as well as their drug targets. In addition, tumor therapy is based on information about molecular alterations; therefore, we searched different genes expression of meningoima in the literature to find genes and proteins with altered expression in meningoimalias in comparison to the normal cells or tissues. So, quantitative and/or modification changes in 23 studies based on genomic and proteomic studies

Authors’ affiliations: ¹Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ²Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Correspondence author and reprints: Mostafa Rezaei Tavirani PhD. Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. E-mail: rezaei.tavirani@ibb.ut.ac.ir. Accepted for publication: 29 January 2014

References

Archives of Iranian Medicine, Volume 17, Number 4, April 2014

262
in meningioma patients published since 1993 were investigated and analyzed.

Materials and Methods

Data Collection

During the last decade, there has been an exponential increase in the number of studies analyzing brain cancer tissue; so in this study, data were extracted from a number of these investigations. 84 papers were reviewed and the papers containing duplicated proteins and genes were eliminated. Finally, 384 non-redundant genes and/or proteins were extracted from 23 papers. All genes and proteins which had significantly different expressions (up-regulated, down-regulated) in meningioma tissues compared to normal tissues or cells (brain and arachnoid cap cells of the meninges) were selected. A minimal fold change of 1.4 (most papers considered ±2 folds but a few used ±1.4) was considered for comparison of genes and proteins between the two groups. Proteins and genes data from different studies were identified by various techniques; for instance, Saydam et al. isolated 281 proteins with

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Score (Density*#Nodes)</th>
<th>Nodes</th>
<th>Edges</th>
<th>Seed</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.419</td>
<td>44</td>
<td>139</td>
<td>P40938</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>7</td>
<td>19</td>
<td>J3KPM5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
<td>21</td>
<td>52</td>
<td>P61024</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4.444</td>
<td>10</td>
<td>23</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>4.308</td>
<td>27</td>
<td>59</td>
<td>R2RBZ4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4.159</td>
<td>89</td>
<td>184</td>
<td>P23193</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>8</td>
<td>15</td>
<td>CHEBL17283</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>Q9ZOE3</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3.957</td>
<td>48</td>
<td>93</td>
<td>Q94979</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>3.333</td>
<td>4</td>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td>3.333</td>
<td>4</td>
<td>5</td>
<td>Q5QR8</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>3.333</td>
<td>4</td>
<td>5</td>
<td>Q6NW02</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>3.167</td>
<td>13</td>
<td>20</td>
<td>Q8TB30</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>A1L374</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>Q7J075</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>DIP-6092N</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>P90304</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>2.857</td>
<td>8</td>
<td>11</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>2.833</td>
<td>13</td>
<td>22</td>
<td>Q05397</td>
<td>7</td>
</tr>
<tr>
<td>24</td>
<td>2.833</td>
<td>13</td>
<td>18</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>2.5</td>
<td>5</td>
<td>6</td>
<td>P09914</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Q15667</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1. The PPI subnetworks were clustered as highly connected regions in meningioma network by MCODE analysis.

Figure 1. PPI Network of meningioma based on cytoscape 3 software. Green ellipses represent hubs in which the left side is related to down-regulated proteins in meningioma compared to the normal and right side green ellipses indicating up-regulated proteins. Blue ellipses represent neighbor nodes. All edges represent physical interactions.
altered expression levels from meningioma cell line and human primary arachnoidal cells by Gel-nanoLC-MS/MS. All genes and proteins were presented in supplementary Table 1. UniProt accession numbers (http://www.uniprot.org), a publicly available web-based tool, was used to search for annotations that are significantly associated to the list of meningioma-related proteins in order to carry out a retrospective meta-analysis of the functional annotations.

Protein-Protein Interaction Analysis

Protein-Protein Interactions (PPIs) are the basic skeleton for self-organization and homeostasis of living organisms. In this study, information on human PPI networks from selected genes was obtained from databases, including the MPIDB, MolCon, MBLinfo, I2D-IMEx, BIND, UniProt, Interopcor, STRING, DIP, IntAct, and MINT. The PPI network was visualized using the Cytoscape 3 software. We integrated the databases and networks and used Molecular Complex Detection (MCODE) to analyze the characteristics of the networks. The MCODE clusters a given network based on topology to find densely connected regions. MCODE considers network as directed graphs and analysis is performed on directed network. Interactomes with a score greater than 2.0 and at least two nodes were selected as significant predictions. The second stage in MCODE algorithm recognizes seeds as a complex with the highest weighted vertex (forward and outward) the weight of which is above a given threshold.

Gene ontology categories were analyzed to identify the function of each highly connected region that was generated by the MCODE. ClueGO v2.0.5, cytoscape plug-in tool, that visualizes the non-redundant biological terms for large clusters of genes in a functionally grouped network, was used to statistically evaluate groups of proteins with respect to the existing annotations of the Gene Ontology. The degree of functional enrichment for a given cluster was quantitatively assessed (P-value) using a hypergeometric distribution implemented in the ClueGO tool.

Result

Three hundred eighty four (384) genes with different gene expression in meningioma were distinguished via literature survey. Among these regulated genes, 176 were up-regulated or newly expressed and 208 were down-regulated or repressed. All data are presented in table S1 (supplementary).

Results of PPI Analysis

The PPI networks of the significantly expressed genes (compared between the meningioma pattern and the control) contain 9860 nodes and 11442 edges (Figure S1). Nods represent the proteins from our list and others that directly interact with them. Connections contain direct interaction partners and interconnections. It is necessary to mention that the edge represents physical or functional interaction between two proteins. In order to simplify the connection patterns, interactions for the nods with the greatest degrees (hubs) was selected. Cytoscape analysis revealed a great number of close interconnections that can be seen in Figure 1. The hub nods included Fibronectin 1 (FN1), Cyclin-dependent kinase 6 (CDK6), MmTRAILb, ubiquitin-conjugating enzyme E2E1 (UBE2E1), VCAM1, Poly[AD-ribose] synthase 1, c-Myc, ISG56, Cdk1, Rnf96, Xrcc5, Fer1l1, Mcm3, MCM7, Spectrin, Fwp007, Flc3A, Gec1, Cyclin, Dbc1, ISG56, Neas, Map1lc3a, Snu114 homolog, BrR2 homolog, Dnm1, Isg54, Mcm2, Cad, Dhc1, Dxs423E, Lrp130, Brg1-associated factor 170, Lpc2d, Map1alc3 and Mcm6. As depicted in figure 1, the left side is related to the down-regulated hubs and the right side corresponds to up-regulated hubs.

Further analysis of complex by MCODE revealed 27 subnetworks for the network (see Table 1). The PPI subnetworks correspond to the differently expressed genes made up of highly connected regions in meningioma pattern versus control samples. Four complexes were selected by comparing the complex with our list (see Figure 2). All subnetworks are represented in figure S2. The seed nodes of these complexes included Q5QNR8, Q9ZE3E, P30304, CHeBI:17283, Q15667, Q50397, P61024, Jkpm5, Dip-6092N, P09914, O76075, A1L374, B2Rts1, P23193, Q87b30, Q94979, P40938 and Q6Nw02. The gene ontology analysis of four selected subnetworks were identified by MCODE and performed by ClueGO (results are depicted in Figure 3).
Figure 2. The PPI subnetworks based on the differently expressed genes made up of highly connected regions in meningioma pattern versus control sample. Clusters 6, 10, 20 and 25, whose seed genes are included in our list, are selected and represented as a, b, c and d, respectively. Yellow ellipses represent seed nodes. Pink ellipses represent neighbor nodes. All edges represent directed interactions that MCODE has not considered in result of complexes.
Figure 3. The functional groups of gene ontology analysis from selected PPI subnetworks of the meningioma network performed by ClueGO. Clusters 6, 10, 20 and 25 are represented as a, b, c and d, respectively.
tion.53 Its expression increases during promyelocyte differentiation54; so in meningioma, it may promote repair mechanisms in brain.

From the minichromosome maintenance complex family, MCM2 and MCM7 are two hubs over-expressed in meningioma. They are replicative helicases essential for DNA replication initiation and elongation in eukaryotic cells.20,55

Interferon-induced protein with tetratricopeptide repeats 3 (IFIT-3 or ISG60) is highly up-regulated in meningioma. IFN-induced antiviral protein acts as an inhibitor of cellular and viral processes, proliferation, signaling, cell migration and viral replication.56 In patients with systemic lupus erythematosus, IFIT-3 is expressed significantly higher in peripheral blood mononuclear cells and monocytes (at protein level).57

Protein complexes were determined by powerful network analyzers. One of the original methods for subnetwork detection in biological data is the MCODE algorithm.46 MCODE weights all nodes by local neighborhood density and identifies densely connected seed regions, which are subsequently modified by adding or removing nodes based on a connectivity criterion. MCODE has been widely applied for detection of complexes in protein interaction networks, and is available as a default plugin for the cytoscape network visualization and analytical tool.60 Many of densely connected regions contribute to known molecular complexes and imply that large amounts of available knowledge are buried in large protein interaction networks. Further study of the complex through analyzing network with MCODE revealed 27 sub-networks described in Table 1. By comparing the complex with our list, we selected four complexes represented in figure 2 and analyzed them based on GO represented in Figure 3. Of seed genes participating in the pathogenesis pathways of meningioma, previously P61024, O76075, Q05397, O94979, Q8TB30, Q6NW02, P23193 were determined as brain tissue proteins;61 but only four of these seed genes, P30304, P09914, P23193, and O94979 are included in our gene list. P0991459 and P2319359 were up-regulated while the expression of P30304 plays a down-regulatory role in meningioma.

The first subnetwork a (cluster 6) (Figure 2, 3) with the seed gene, P23193 (TCEA1), transcription elongation factor A1 is newly expressed in meningioma. It is also expressed in brain and some other tissues. It is necessary for efficient RNA polymerase II transcription elongation. It is composed of a transcription regulatory complex family of UBR5, CDK9, RNAP II, and TFIIIS/ TCEA1 that can stimulate transcription of genes such as gamma fibrinogen/FGG.57 The TCEA1-related family is involved in many essential cellular functions, especially positive regulation of the immune system process, nucleotide and nucleic acid metabolic process, regulation of transcription, nitrogen compound metabolic process, multilocus organ system development, metabolic process, biosynthetic process, regulation of gene expression, regulation of macromolecule biosynthetic process, hematopoiesis, myeloid cell differentiation, cell differentiation, erythrocyte differentiation, multicellular organ system process, developmental process, RNA biosynthetic process, erythrocyte homeostasis, and cellular nitrogen compound metabolic process. Up-regulated TCEA1 in meningioma has positive regulation in RBC homeostasis to eliminate erythrocytes in tissue because meningiomas are highly vascularized (before demonstrated increased expression of vascular endothelial growth factor (VEGF) in meningioma tumor).59 Increased VEGF expression and increased expression of vascular permeability factor are correlated with increased microvessel density and microcystic morphology of meningiomas.64 O94979 (SEC31A), which was down-regulated in meningioma, is expressed in a number of tissues such as blood, brain, epithelium, pancreas, placenta, PNS, spleen, testis and uterine endometrium.65 This protein is a component of the coat protein complex II (COPII) which promotes the formation of transport vesicles of ER. The physical deformation of the ER membrane into vesicles and selection of cargo molecules are the main functions of coat.66 The PPI analysis (Figures 2, 3) explained SEC31A in the subnetwork b (cluster 10) as the SEC31A related family is involved in many functional classes such as antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-independent, COPII vesicle coat, ER to Golgi transport vesicle membrane. Therefore, in meningioma, these processes are down-regulated.

The next subnetwork with P30304 (CDC25A) as seed gene operates as a dosage-dependent inducer of mitotic progression. It is a tyrosine protein phosphatase that directly dephosphorylates CDK1 and stimulates its kinase activity. It also dephosphorylates in vitro the complex of CDK2 and cyclin E.66 Victor Martinez-Gleza et al. identified that P30304 is down-regulated in meningioma compared to normal.20 Decreasing CDC25A expression might exert an up-regulation effect on production of other cell cycle proteins to promote meningioma. The PPI analysis (Figures 2 and 3) showed that in the subnetwork c (cluster 25), the P30304 related family (P51965 and O00762) is only involved in mitotic spindle checkpoint. Therefore, in meningioma, the regulation of mitotic spindle checkpoint protein in the cell cycle is down-regulated.

The last seed gene is P09914 (IFIT1 or ISG56), interferon-induced protein with tetratricopeptide repeats 1 that was up-regulated in meningioma pathogenesis. The PPI analysis (Figures 2 and 3) revealed as the subnetwork d (cluster 25), the IFIT1 related family is only involved in cellular response to exogenous dsRNA, thereby acting as a sensor of viral single-stranded RNAs and preventing expression of viral messenger RNAs. It exhibits antiviral activity against several viruses including human papilloma and hepatitis C viruses.67,68 As depicted in figure 1, IFIT1 is also one of the hub proteins; so, this protein might be a putative biomarker. Over the past few decades, many studies have identified pathways within meningioma, examples of which include the RAF-1-MEK-1-MAPK/ERK pathway,69–71 and the P13K-Akt/protein kinase BP7056 pathway, loss of alkaline phosphatase activity,70–72 and expression of minichromosome maintenance-2 protein.20 Recently, Okay Saydam et al. investigated novel potential tumor markers for meningiomas and found that meningioma pathogenesis is associated with various biological functions such as DNA replication, recombination, cell cycle, and apoptosis.20 Our major findings of pathways-based network, that illustrated difference between the meningioma pattern and normal one, are composed of positive regulation in RBC homeostasis to eliminate erythrocytes in brain, dysregulation of transport from ER to Golgi and antigen processing and presentation of exogenous peptide antigen via MHC class I, disrupted regulation of mitotic spindle checkpoint and finally neutralization of exogenous dsRNA. Combination of over-expression of TCEA1, UBE2E1, XRCC5, IFIT1, IFIT-3, MCM2 and MCM7 and under-expression of CDC25A, SEC31A and CDK6 can serve as a diagnostic biomarker panel for meningiomas. To unravel the possible role(s) of these proteins.
in meningioma tumorigenesis, further investigations are needed.

References

